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Abstract — The variable time step method introduced by Douglas and Gallie for solving a one-dimensional

Stefan problem with constant heat flux at the fixed end is extended to cover a more general boundary

condition. The numerical results are obtained for solidification of a liquid initially at its fusion temperature. A

method due to Goodling and Khader is discussed in detail and some practical aspects of its implementation

are investigated. The same problem is solved by the “modified variable time step” method earlier suggested

by the present authors. The results from all the methods are almost identical. An approximate analytical
solution is obtained by the heat-balance integral method.

NOMENCLATURE
u, temperature;
i, time;
S, s, positions of interface;
X,x, space coordinates;
a,b, arbitrary constants;
A,B, parameters;
r, constant parameter.

Greek symbols

a, thermal diffusivity of solid;

At, time step;

Ax, space interval;

o, parameter.
Subscripts

ij,p, locations in x—¢ plane.
Superscripts

k, number of iterations,

1L INTRODUCTION

Due 1o their wide range of applications the phase
change problems arising during the process of mel-
ting/solidification have drawn the considerable atten-
tion of mathematicians, engineers and scientists alike
in the recent past. These problems are also called
“moving boundary problems” since the solid/liquid
interface changes its position continuously during the
process of phase-change. Sometimes such problems
are referred to as “Stefan problems” after Stefan [1]
who published his first paper on this subject. Since the
boundary condition at the solid/liquid interface in the
case of a two phase problem, or at the receding end in
the case of a one phase (ablation) problem renders the
simple heat conduction equation to a non-linear one,
the exact analytical solution is, in general, not possible
to obtain. Therefore, recourse is made either to
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approximate analytical methods or to numerical me-
thods. Amongst the first category the methods due to
Goodman [2] and Biot [ 3] are noteworthy while in the
other a number of methods have been suggested from
time to time. It will be worthwhile to mention, in
particular, the general surveys by Muehibauer and
Sunderland [4] and by Bankhoff [5] on moving
boundary problems.

The numerical methods for a one-dimensional Ste-
fan problem have been classified by Gupta [6] as (i)
fixed grid methods and (ii) variable grid methods. The
fixed grid methods are those in which the space~-time
domain is subdivided into a finite number of equal
grids for all times. At any time the moving boundary
lies somewhere between two grid points. The position
of the moving boundary and temperatures at its
immediate neighbouring points are calculated by
using finite difference replacements for unequal in-
tervals. The methods of Crank [ 7] and Ehrlich [8] may
be cited as examples of this class. Under variable grid
methods the x~t domain is subdivided into equal
intervals in one direction only. The corresponding grid
size in the other direction is then determined so that
the moving boundary always remains at a grid point,
Murray and Landis [9] choose equal steps in time
direction and keep the number of space intervals fixed
for all times. It should be noted that since the number
of space intervals is kept fixed, its size changes
(increases or decreases) as the boundary moves. An-
other example of a variable grid method is that of
Douglas and Gallie [10]. They subdivide the x-
direction into equal intervals and choose time steps
such that the moving boundary crosses exactly one
mesh during that interval. Goodling and Khader [11,
12] have also given a variable time step method which
has been discussed in greater detail in the present
paper. Yet another method is due to Crank and Gupta
[13, 14] in which t-direction is subdivided into equal
intervals and size of the space intervals is kept fixed.
This results in unequal interval near the fixed surface
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with other intervals remaining of fixed size throughout
the process. There is another important method, called
the Isotherm Migration Method (IMM), falling under
variable grid methods which calculates the movement
of previously selected isotherms into the medium in
one time step. Although initially introduced by
Chernousko [15] the IMM has been systematically
presented by Dix and Cizek [16]. This method is later
extended in two dimensions by Crank and Gupta [17].

In the present paper we are concerned with variable
time step methods only, i.e. when x-direction is sub-
divided into a finite number of equal intervals and a
time step is determined such that the boundary
traverses one space mesh during that time. The paper
consists of two parts. In Part I the method of Douglas
and Gallie [9], originally presented for constant heat
flux at the fixed surface, is extended to cover a more
general (convective type) boundary condition. We
will refer to it as Extension of Douglas and Gallies
(EDG) method. In Part II the “modified variable time
step” method [ 18] proposed earlier by present authors
also for a constant heat flux has been applied to solve
the same problem. This will be referred to as the MVTS
method in future. Numerical results are obtained for
both of these methods and the agreement is found to be
extremely good. Analytical expressions for movement
of the interface and temperature distribution are also
obtained using the heat balance integral method of
Goodman [2]. The results compare quite well with
those from the EDG and MVTS methods.

2. PART I: EXTENSION OF
DOUGLAS AND GALLIE’S (EDG) METHOD

The problem

Let us consider the inward solidification of a liquid, imtially
at its fusion temperature of unity, enclosed by —1 < X < L.
The liquid is allowed to cool by losing heat through surfaces
X = +1 according to a convective boundary condition
(Fig. 1).

Since the same boundary conditions are applied on both
the fixed surfaces X = + 1, the solidification process will be
symmetrical about X = 0. We will therefore be concerned
with the solution in the region 0 < X < 1 only. The tempera-
ture distribution in the other region,ie. —1 < X < 0can be
known by symmetry. Mathematically, expressed in its non-
dimensional form we require the solution of the equation
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F1c. 1. One-dimensional solidification with convective boun-
dary condition.
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along with the boundary conditions

cu

— e =au+ b, X =1, 1>
cX
u= 1. 0< X <SSty 720
dX  du i
= X = Stey, -4,
dt X

and the initial condition
S0y = 0.

where S(r) denotes the distance of the moving boundary from
the fixed surface X = 1 at time 1.

Transforming the above system by putting x = 1 — X and
s(t) = 1 — S(¢), the governing equations become
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=—,  x=s0), (>0 i

dr ox
s{0) = 0. (5

where s is the distance of the interface from x = (.

A variable time grid

We subdivide the region 0 < x < | into, say, #n
intervals each of width Ax such that nAx = 1. The time
interval Ar at each step is chosen such that the
boundary moves a distance Ax during that interval.
Any point (x;, t;) in x-t domain is given by

ity
(iAx, Z At, )

\ m=0

i

where At,, denotes the time interval in which the
boundary moves one space interval from mAx to
(m + 1)Ax; t, being zero time. Let the moving boun-
dary be at a distance jAx from the fixed surface x = O at
time ¢; (Fig. 2). We wish to calculate At;, i.e. the time
taken by the moving boundary in traversing a distance
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F1G. 2. Variable time grid along with positions of the interface.
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Ax from its position jAx to (j + 1)Ax along with
temperatures at the mesh points x4, x;,..., ;4 at time

tss-

Extension of the method and its implementation

Let u; ;represent temperature at the mesh point (i, j)
of the variable time grid (Fig. 2). Replacing left side of
(1) by backward difference at the point (x;, ¢ j+1) and
right side by central difference, we can write

{tiv] Liitial UiV

o
1g1iL S

Uiy, je1 — 20 jey Uiy i1

(Ax)?

— U

Ui, j+1

At;

Rearrangement of above gives
~ oy g gy + (200 + Dy jog — iy jeq =y
i=12,...,j (6)

where r = Ar;/(Ax)*.

In order to determine At; we integrate both sides of
equation (1) with respect to x, from 0 to s(¢). Making
use of (2) through (4), we get

d s(t)

—I:f u(x,t)dx — (o + l)s] = —aau(0,t) — ab.

de| Jo

Integrating further with respect to ¢ from 0 to ¢ and
using (5) we obtain

s(t)

abt + aa J' u(0,0)dt = (¢ + 1)s — J. u(x,t)dx. (7)

0 0

The finite difference replacement of (7), when ¢
= t;41, is made to give

jt1

abt; y +aa Y Uy A,
p=1
j+1
=@+ D0+ DA —AX Y Uiy j4q (8)
i=1

After a little bit of manipulation (8) gives
j+1
Aty = [(a + DG+ DAx —abt; — Ax Y ey juy

i=1

—oa i uo.pAtp_,:,/[a(b +aug j40)) 9)

It should be noted that in (8) the finite difference
replacements of the integrals have been made such that
the value of At; obtained from (9) matches with the one
obtained by satisfying the boundary conditions (2) and
(4) at j = 1 (see Section 4).

By choosing a suitable estimate of At; we compute
ws from (6) and the estimated value of At is sub-
sequently improved by (9). This iterative process is
repeated until desired accuracy in At is achieved. We
write the kth iteration for solving (j + 1) equations in
(j + 1) unknowns, viz. u; ;4,1 =0,1,...,j as follows:

ul) 1 — (1 + aAx)uP); | = bAx (10)
- ar(k’usk—)l,j-fl + Qar® + 1)“%“
—or®ul®, i =u i=12,...,5 (1)
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where r® = At¥/(Ax)? and uf, 4, = 1 from (3) for
all k.
Similarly (k + 1)th iteration for calculating At; can
be written from (9) as
jt1
A+ D = [(a + 1)+ DAx ~abt; — Ax Y u®, .,

i=1

J
—aa y uo,,.At..-l-l /[“(b +auf ;)] (12)
p=1 I ”

Choosing At{”’ same as At;_;, already calculated, we
determine u{®),,,i =0,1,2,...,jfrom(10)and (11) and
these values in turn are used to find a new estimate A{"
from (12). AtV substituted in (10) and (11) gives new
set of values of u*”s. This process is continued until
difference between two successive values of At; be-

comes small to desired accuracy.

3. PART II: MODIFIED VARIABLE
TIME STEP (MVTS) METHOD AND ITS
COMPARISON WITH OTHER METHODS
Goodling and Khader [ 11, 12] have given a variable
time step method and have applied it to the problem
enunciated in Part I. However, numerical values are
not tabulated by them and some essential steps for
implementing the method are also not explained
clearly in any of their papers [11, 12]. Therefore we
have computed the results independently and have
explained in detail the relevant points for implemen-
tation of their method. The same problem is then
solved by the MVTS method which was earlier
suggested by the present authors [18] for a moving
boundary problem with constant heat flux. Let us
describe these methods in brief.

(a) Goodling and Khader’s (GK ) method

They arrive at the same set of simultaneous equa-
tions (10, 11) for determining the temperatures at
(j + Dth time level at the kth iteration. The boundary
condition (4) is replaced by the following finite differ-
ence formula

k k
u5'+)1,j+1 - uﬂ-,’,-ﬂ _ Ax
Ax At‘j"’
giving
Ax?
k)
AtJ' - 1 — u® ' (13)
Uji+1

The method suggests that after choosing some value
of ul®}, 1, At is calculated from (13). Taking this value
of A, uf®),,,i=0,1,2,...,j are calculated from (11).
The boundary condition (10) is then tested for the
accuracy for the selection of 4}, ,. If the boundary
condition (10) is not satisfied, u;, ;. , is estimated again
and a new At; is obtained from (13) which in turn is
used to obtain new values of u; ;.. This process is
repeated until a desired accuracy in (10) is achieved.

The manner in which u; ;. , is to be selected has not
been elaborated by them. However, we tried taking



254

u{?, | equal to u,_, ;as a suitable estimate ; kept on
giving a small increment to it successively until a
change of sign in the error in (10) is noticed; and
interpolation for u; ;. , is then carried out either by the
method of chords or the bisection method. We find
that this procedure does not work in the present
problem after some time. The method for solving (11)
becomes unstable and the error in boundary condition
(10) behaves in an irregular fashion. Therefore we
discard this method of selecting u; ;,, and adopt the
following approach.
Instead of selecting u; ;. ;, we estimate At{ from

A = At + (At — Atj_p) + (14)

where ¢ is small. u{0), ; is calculated using (13); values
of u®),, are then determined from (11); boundary
condition (10) is checked whether it is satisfied within
the desired accuracy; if not, a suitable decrement,
approximately 0.29; of Ax is given to At; and calcu-
lations repeated until there is a change of sign in the
error; the value of Ar; is then interpolated by the
method of bisection.

(b) Modified variable time step (MV TS ) method
In this method also we make finite difference
replacements of (1) at (x;,¢;,,) and obtain (11) as in
EDG and GK methods. The boundary condition (10)
is also written as before. The interface condition (4) is
written, similar to (13), as
Ax?

—
T—u®,

(15)

(k+1) _
A =

Choosing At!” equal to At;_, initially, we solve the
set of simultaneous equations (10, 11) which gives
w je1,i=0,1,2,...,j. Using value of uf?}, ; in (15) we
get first estimate Ar{". This process is repeated until
desired accuracy in At is obtained. It should be noted
that in the present method, accuracy check is made at
the interface while in the GK method it is done at the
fixed end. This results in solving the simultaneous
equations by Gaussian elimination in the present
method whereas an iterative technique, which makes
the process unstable, is used in the GK method.

4. NUMERICAL COMPUTATIONS

To start any of the methods from ¢ = 0tor = At,ie.
to calculate At,, we make the following finite difference
replacements of the boundary conditions at the fixed
surface and the moving boundary at ¢ = At, giving,

Uy, 1 — Yo

=auy ; + b,
AX 0.1

and

Ug  — 1ty _ AX

T Ax —ATO

respectively. Eliminating u, , and remembering that
u, ; = 1 we get from the above
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A Ax(]l + aAx)
ty = 7~((1A:+h)7 {16}
In order to compare our results we take a sampie
problem witha = lin(l)and « = 10, b = 01in (2), the
case which has been dealt with by Goodling and
Khader [11, 12]. Values of A: and temperature
distributions have been computed from all the three
methods, viz, EDG, GK and MVTS for Ax = 0.100,
0.050, 0.025 and 0.010. A maximum error of 0.05%; in
At js allowed in the EDG and MVTS methods while in
the GK method the same error is allowed in the
boundary condition (10). It has been noticed that for
Ax = 0.01, the GK method breaks down when boun-
dary condition is allowed to satisfy within an accuracy
of 0.05°, or 0.10%;, therefore the results in it for Ax
= (.01 are computed with a larger error (0.59,). In ali
the methods At has been calculated from (16}
Table 1 gives comparative figures, for all the me-
thods, for the time required by the interface to move
one space interval as well as surface temperatures. As
all these methods are iterative, the number of iterations
for obtaining a At are shown in parentheses in the A:-
column. For example, when s(1} = 0.20 and Ax = 0.05,
the time taken by the interface in moving from sti}
=0.15t00.201s0.0186 by EDG, 0.0187 by MVTS and
0.0186 by the GK method and the corresponding
number of iterations are 3, 3 and 8 respectively. Table 2
shows temperature distributions in the solid region ut
different times for Ax = 0.05 from various methods

5. DISCUSSION

It can be seen from Tables | and 2 that the EDG
method has worked very well throughout. From Table
| we see that the method converges quite fast. The
value of At, within prescribed accuracy, is obtained in 3
iterations or less for most part of the solidification
process. At the last stage only. the number of iterations
sometimes go up to a maximum of 6. The numerical
results as well as the number of iterations to obtain Ar
from the MVTS method compare very well with the
EDG method. Although the results obtained from the
GK method agree quite well with the other two
methods, the iterations are much larger.

Further, it may be recoliected that numerical results
from the GK method corresponding to Ax = 0.01
have been computed by allowing a relatively larger
error. It must be emphasized that the method of
estimating u; ;. and its subsequent adjustment in the
GK method is very crucial. The method may fail (not
converge) or may give inaccurate results if a different
initial estimate is chosen. We have further refined the
method by selecting an estimate for Ar rather than for
u; ;4 [see equation (14)].

Figure 3 shows that the movement of the interface 1s
somewhat faster in the beginning in comparison o
later part of the process when il assumes an almost
linear relationship with time. It also indicates that
solidification process is completed att = 0.80 when the
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Time t
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0.0 0.2 0.4 06 0.8 1
Boundary s({t) —»

B T

FIG. 3. Position of interface (moving boundary) vs time graph
(from EDG with Ax = 0.05).

interface s(t) has reached x = 1.0. In Fig. 4, curves for
temperature distributions in the solid region are drawn
for various times. A graph between surface tempera-
ture and time is plotted in Fig. 5 which shows an
appreciable drop in the beginning of the solidification
process. Very soon, approximately after ¢ = 0.1 the
rate of fall of surface temperature gets exceedingly

Temperature u(x,t)

|
04 0.6 0.8
Distance x —————»

FIG. 4. Temperature distributions at various times (from
EDG with Ax = 0.05). Dotted lines show positions of the
interface.
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0.2~

. 4 0.6 0.8 .0
Surface temperature u(0,t)—

FiG. 5. Plot of surface temperature against time (from EDG
with Ax = 0.05).

small.

Figures 3-5 have been drawn from the numerical
results of the EDG method with Ax = 0.05 (Table 2).
It may be observed that these values are almost
identical to those obtained from the other methods
with corresponding Ax.

The variable time step methods need special atten-
tion when the movement of the boundary is very slow.
However, in the present case since the boundary is
moving quite fast throughout the process of solidifi-
cation (Fig. 3), the time calculated for a particular
position of the interface does not differ very much even
when we have taken different values of Ax (Table 1).

6. INTEGRAL METHOD

Using Goodman’s integral method [2] we have
obtained an approximate analytical expression for the
temperature distribution

u(x,t) =1 + A(x — s) + B(x — s)* 17
where
4_"C + (302 — 2)172
s(o + 1)
- g — 2 /2
e 1) [26% — 6(30? ~ 2) 1]
and
o=1+ 10s.

The relationship between position of the interface
and time is given by the differential equation,
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de (30 — 2)'2{75* + 280> + 300% + 126 + 3} + {30° + 126" + 300° + 120% — 250 — 16}

do 600(0' + 1)2 (30’2 — 2)1”2 {30- +2 - (30.2 — 2)1/2}

(18)

The analytical solution of (18) does not seem ture u(0,t) at various times. Corresponding numerical
feasible, therefore, we solve it numerically by using a  values are also given from EDG and MVTS methods

fourth order Runge-Kutta algorithm. Table 3 gives for
position of the interface s(t) and the surface tempera-

Ax = 0.05 for comparison.

Table 3. Comparison of time ¢ required for a movement s(t) of the interface and the surface temperature

u(0,t) from the Integral Method with

EDG and MVTS methods

Position of Time ¢

Surface temperature u(0,t)

interface EDG MVTS Integral EDG MVTS Integral
s(t) method method method method method method
01 0.0191 0.0191 0.0178 0.5232 0.523t 0.5375
0.2 0.0529 0.0530 0.0487 0.3635 0.3634 0.3750
0.3 0.1003 0.1004 0.0918 0.2774 0.2773 0.2887
0.4 0.1608 0.1610 0.1468 0.2237 0.2237 0.2349
0.5 0.2345 0.2347 0.2136 0.1873 0.1873 0.1980
0.6 0.3213 0.3215 0.2920 0.1609 0.1609 0.1712
0.7 04211 04213 0.3820 0.1410 0.1410 0.1508
0.8 0.5339 0.5342 0.4836 0.1255 0.1255 0.1348
09 0.6598 0.6601 0.5967 0.1130 0.1130 0.1218
1.0 0.7987 0.7990 0.7214

0.1028 0.1028 0.1111

Note—Values for EDG and MVTS methods correspond to Ax = 0.05.
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METHODES A PAS DE TEMPS VARIABLE POUR LE PROBLEME DE STEFAN
A UNE DIMENSION, AVEC DES CONDITIONS AUX LIMITES MIXTES

Résumé—La méthode 4 pas de temps variable introduite par Douglas et Callie pour résoudre un probléme
monodimensionnel de Stefan avec un flux thermique constant 4 I'extrémité fixe est étendue pour couvrir une
condition limite plus générale. Les résultats numériques sont obtenus pour la solidification d’un liquide
initialement 4 sa température de fusion. Une méthode due & Goodling et Klader est discutée en détail et
quelques aspects pratiques d’application sont étudiés. Le méme probléme est résolu par la “méthode a pas de
temps variable modifiée” antérieurement suggérée par les auteurs. Les résultats de toutes ces méthodes sont a
peu prés identiques. Une solution analytique approchée est obtenue par la méthode du bilan intégral de
chaleur.

METHODEN MIT VARIABLEM ZEITSCHRITT ZUR LOSUNG DES EINDIMENSIONALEN
STEFAN-PROBLEMS MIT GEMISCHTEN RANDBEDINGUNGEN

Zusammenfassung — Die von Douglas und Gallie eingefithrte Zeitschritt-Methode zur Losung des
eindimensionalen Stephan-Problems mit konstantem Wirmestrom am festen Ende wird so erweitert, daB sie
fiir eine allgemeine Randbedingung anwendbar wird. Numerische Resultate wurden fiir das Erstarren einer
anfinglich auf Schmelztemperatur befindlichen Fliissigkeit ermittelt. Die Methode von Goodling und
Khader wird ausfiihrlich diskutiert, und einige Gesichtspunkte ihrer praktischen Durchfiihrung werden
erdrtert. Dasselbe Problem wird mit der von den Autoren schon frither vorgeschlagenen variablen
Zeitschritt-Methode geldst. Die Ergebnisse aller Verfahren sind fast identisch. Eine analytische Niherungs-
16sung wurde mit der Wirmebilanzintegral-Methode erhalten.

METO/bI TTEPEMEHHBIX BPEMEHHbBIX IIAI'OB B 3AJJAYE CTE®AHA
CO CMEWIAHHbLIMH IT'PAHNUYHBIMU YCJIOBUAMHU

AHnoTamma — MeTo nepeMeHHBIX BpeMeHHBIX LIaroB, npemtoxeHuslit yrinacom u Tamau nns
peleHuss oAHOMepHOit 3ajauM CredaHa C NMOCTOAHHBIM TEIUIOBEIM MMOTOKOM Ha (PUKCHPOBaHHO#M
rpaHuue, 0000wWweH Ha ciyyait Gonee obiiero rpaHudHOro yca0BHs. [lony4eHBl YHCIEHHBIE Pe3Y/IbTaTh
N0 3aTBEPACBAaHMIO XMAKOCTH, NMEPBOHAYAJIbHO HaXOAMBILEHCA NPH TeMmepaTtype miasieHds. [an
noapoOHblii ananms Metoda ['ymiunra u Kxanepa n paccMOTpeHb! HEKOTODBIE IPAKTHYECKHE ACIEKTHI
ero npumenenns. Ta e 3afaua pelleHa METOAOM «MOIUPHIMPOBAHHOTO MEPEMEHHOTO BPEMEHHOTO
mara», KOTopslii ObU1 paHee NpPEANOXEH aBTOpaMHM HacTosuweii pabGoThl. PesynbTaThl, nosydeHHbie
BCEMH NEPEUHCICHHBIME METOJAMH, OKa3aJINCh NOYTH WACHTHYHbIMH. [IpHOIDkeHHOE aHATHTHYECKOE
pelleHne TOJy4EHO HHTErpabHbIM METOMOM TeNJIoBoro Gananca.
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